Modules: TypeScript#

Enabling#

There are two ways to enable runtime TypeScript support in Node.js:

  1. For full support of all of TypeScript's syntax and features, including using any version of TypeScript, use a third-party package.

  2. For lightweight support, you can use the built-in support for type stripping.

Full TypeScript support#

To use TypeScript with full support for all TypeScript features, including tsconfig.json, you can use a third-party package. These instructions use tsx as an example but there are many other similar libraries available.

  1. Install the package as a development dependency using whatever package manager you're using for your project. For example, with npm:

    npm install --save-dev tsx 
  2. Then you can run your TypeScript code via:

    npx tsx your-file.ts 

    Or alternatively, you can run with node via:

    node --import=tsx your-file.ts 

Type stripping#

Stability: 1.0 - Early development

The flag --experimental-strip-types enables Node.js to run TypeScript files that contain only type annotations. Such files contain no TypeScript features that require transformation, such as enums or namespaces. Node.js will replace inline type annotations with whitespace, and no type checking is performed. TypeScript features that depend on settings within tsconfig.json, such as paths or converting newer JavaScript syntax to older standards, are intentionally unsupported. To get fuller TypeScript support, including support for enums and namespaces and paths, see Full TypeScript support.

The type stripping feature is designed to be lightweight. By intentionally not supporting syntaxes that require JavaScript code generation, and by replacing inline types with whitespace, Node.js can run TypeScript code without the need for source maps.

Determining module system#

Node.js supports both CommonJS and ES Modules syntax in TypeScript files. Node.js will not convert from one module system to another; if you want your code to run as an ES module, you must use import and export syntax, and if you want your code to run as CommonJS you must use require and module.exports.

  • .ts files will have their module system determined the same way as .js files. To use import and export syntax, add "type": "module" to the nearest parent package.json.
  • .mts files will always be run as ES modules, similar to .mjs files.
  • .cts files will always be run as CommonJS modules, similar to .cjs files.
  • .tsx files are unsupported.

As in JavaScript files, file extensions are mandatory in import statements and import() expressions: import './file.ts', not import './file'. Because of backward compatibility, file extensions are also mandatory in require() calls: require('./file.ts'), not require('./file'), similar to how the .cjs extension is mandatory in require calls in CommonJS files.

The tsconfig.json option allowImportingTsExtensions will allow the TypeScript compiler tsc to type-check files with import specifiers that include the .ts extension.

Unsupported TypeScript features#

Since Node.js is only removing inline types, any TypeScript features that involve replacing TypeScript syntax with new JavaScript syntax will error. This is by design. To run TypeScript with such features, see Full TypeScript support.

The most prominent unsupported features that require transformation are:

  • Enum
  • experimentalDecorators
  • namespaces
  • parameter properties

In addition, Node.js does not read tsconfig.json files and does not support features that depend on settings within tsconfig.json, such as paths or converting newer JavaScript syntax into older standards.

Importing types without type keyword#

Due to the nature of type stripping, the type keyword is necessary to correctly strip type imports. Without the type keyword, Node.js will treat the import as a value import, which will result in a runtime error. The tsconfig option verbatimModuleSyntax can be used to match this behavior.

This example will work correctly:

import type { Type1, Type2 } from './module.ts';
import { fn, type FnParams } from './fn.ts'; 

This will result in a runtime error:

import { Type1, Type2 } from './module.ts';
import { fn, FnParams } from './fn.ts'; 

Non-file forms of input#

Type stripping can be enabled for --eval and STDIN input. The module system will be determined by --input-type, as it is for JavaScript.

TypeScript syntax is unsupported in the REPL, --print, --check, and inspect.

Source maps#

Since inline types are replaced by whitespace, source maps are unnecessary for correct line numbers in stack traces; and Node.js does not generate them. For source maps support, see Full TypeScript support.

Type stripping in dependencies#

To discourage package authors from publishing packages written in TypeScript, Node.js will by default refuse to handle TypeScript files inside folders under a node_modules path.