Node.js v25.0.0 documentation
- Node.js v25.0.0
-
Table of contents
- Web Crypto API
- Modern Algorithms in the Web Cryptography API
- Secure Curves in the Web Cryptography API
- Examples
- Algorithm matrix
- Class:
Crypto - Class:
CryptoKey - Class:
CryptoKeyPair - Class:
SubtleCrypto- Static method:
SubtleCrypto.supports(operation, algorithm[, lengthOrAdditionalAlgorithm]) subtle.decapsulateBits(decapsulationAlgorithm, decapsulationKey, ciphertext)subtle.decapsulateKey(decapsulationAlgorithm, decapsulationKey, ciphertext, sharedKeyAlgorithm, extractable, usages)subtle.decrypt(algorithm, key, data)subtle.deriveBits(algorithm, baseKey[, length])subtle.deriveKey(algorithm, baseKey, derivedKeyAlgorithm, extractable, keyUsages)subtle.digest(algorithm, data)subtle.encapsulateBits(encapsulationAlgorithm, encapsulationKey)subtle.encapsulateKey(encapsulationAlgorithm, encapsulationKey, sharedKeyAlgorithm, extractable, usages)subtle.encrypt(algorithm, key, data)subtle.exportKey(format, key)subtle.getPublicKey(key, keyUsages)subtle.generateKey(algorithm, extractable, keyUsages)subtle.importKey(format, keyData, algorithm, extractable, keyUsages)subtle.sign(algorithm, key, data)subtle.unwrapKey(format, wrappedKey, unwrappingKey, unwrapAlgo, unwrappedKeyAlgo, extractable, keyUsages)subtle.verify(algorithm, key, signature, data)subtle.wrapKey(format, key, wrappingKey, wrapAlgo)
- Static method:
- Algorithm parameters
- Class:
Algorithm - Class:
AeadParams - Class:
AesDerivedKeyParams - Class:
AesCbcParams - Class:
AesCtrParams - Class:
AesKeyAlgorithm - Class:
AesKeyGenParams - Class:
Argon2Params - Class:
ContextParams - Class:
CShakeParams - Class:
EcdhKeyDeriveParams - Class:
EcdsaParams - Class:
EcKeyAlgorithm - Class:
EcKeyGenParams - Class:
EcKeyImportParams - Class:
EncapsulatedBits - Class:
EncapsulatedKey - Class:
HkdfParams - Class:
HmacImportParams - Class:
HmacKeyAlgorithm - Class:
HmacKeyGenParams - Class:
KeyAlgorithm - Class:
KmacImportParams - Class:
KmacKeyAlgorithm - Class:
KmacKeyGenParams - Class:
KmacParams - Class:
Pbkdf2Params - Class:
RsaHashedImportParams - Class:
RsaHashedKeyAlgorithm - Class:
RsaHashedKeyGenParams - Class:
RsaOaepParams - Class:
RsaPssParams
- Class:
- Web Crypto API
-
Index
- Assertion testing
- Asynchronous context tracking
- Async hooks
- Buffer
- C++ addons
- C/C++ addons with Node-API
- C++ embedder API
- Child processes
- Cluster
- Command-line options
- Console
- Crypto
- Debugger
- Deprecated APIs
- Diagnostics Channel
- DNS
- Domain
- Environment Variables
- Errors
- Events
- File system
- Globals
- HTTP
- HTTP/2
- HTTPS
- Inspector
- Internationalization
- Modules: CommonJS modules
- Modules: ECMAScript modules
- Modules:
node:moduleAPI - Modules: Packages
- Modules: TypeScript
- Net
- OS
- Path
- Performance hooks
- Permissions
- Process
- Punycode
- Query strings
- Readline
- REPL
- Report
- Single executable applications
- SQLite
- Stream
- String decoder
- Test runner
- Timers
- TLS/SSL
- Trace events
- TTY
- UDP/datagram
- URL
- Utilities
- V8
- VM
- WASI
- Web Crypto API
- Web Streams API
- Worker threads
- Zlib
- Other versions
- Options
Web Crypto API#
Node.js provides an implementation of the Web Crypto API standard.
Use globalThis.crypto or require('node:crypto').webcrypto to access this
module.
const { subtle } = globalThis.crypto;
(async function() {
const key = await subtle.generateKey({
name: 'HMAC',
hash: 'SHA-256',
length: 256,
}, true, ['sign', 'verify']);
const enc = new TextEncoder();
const message = enc.encode('I love cupcakes');
const digest = await subtle.sign({
name: 'HMAC',
}, key, message);
})();
Modern Algorithms in the Web Cryptography API#
Node.js provides an implementation of the following features from the Modern Algorithms in the Web Cryptography API WICG proposal:
Algorithms:
'AES-OCB'1'Argon2d'2'Argon2i'2'Argon2id'2'ChaCha20-Poly1305''cSHAKE128''cSHAKE256''KMAC128'1'KMAC256'1'ML-DSA-44'3'ML-DSA-65'3'ML-DSA-87'3'ML-KEM-512'3'ML-KEM-768'3'ML-KEM-1024'3'SHA3-256''SHA3-384''SHA3-512'
Key Formats:
'raw-public''raw-secret''raw-seed'
Methods:
Secure Curves in the Web Cryptography API#
Node.js provides an implementation of the following features from the Secure Curves in the Web Cryptography API WICG proposal:
Algorithms:
'Ed448''X448'
Examples#
Generating keys#
The <SubtleCrypto> class can be used to generate symmetric (secret) keys or asymmetric key pairs (public key and private key).
AES keys#
const { subtle } = globalThis.crypto;
async function generateAesKey(length = 256) {
const key = await subtle.generateKey({
name: 'AES-CBC',
length,
}, true, ['encrypt', 'decrypt']);
return key;
}
ECDSA key pairs#
const { subtle } = globalThis.crypto;
async function generateEcKey(namedCurve = 'P-521') {
const {
publicKey,
privateKey,
} = await subtle.generateKey({
name: 'ECDSA',
namedCurve,
}, true, ['sign', 'verify']);
return { publicKey, privateKey };
}
Ed25519/X25519 key pairs#
const { subtle } = globalThis.crypto;
async function generateEd25519Key() {
return subtle.generateKey({
name: 'Ed25519',
}, true, ['sign', 'verify']);
}
async function generateX25519Key() {
return subtle.generateKey({
name: 'X25519',
}, true, ['deriveKey']);
}
HMAC keys#
const { subtle } = globalThis.crypto;
async function generateHmacKey(hash = 'SHA-256') {
const key = await subtle.generateKey({
name: 'HMAC',
hash,
}, true, ['sign', 'verify']);
return key;
}
RSA key pairs#
const { subtle } = globalThis.crypto;
const publicExponent = new Uint8Array([1, 0, 1]);
async function generateRsaKey(modulusLength = 2048, hash = 'SHA-256') {
const {
publicKey,
privateKey,
} = await subtle.generateKey({
name: 'RSASSA-PKCS1-v1_5',
modulusLength,
publicExponent,
hash,
}, true, ['sign', 'verify']);
return { publicKey, privateKey };
}
Encryption and decryption#
const crypto = globalThis.crypto;
async function aesEncrypt(plaintext) {
const ec = new TextEncoder();
const key = await generateAesKey();
const iv = crypto.getRandomValues(new Uint8Array(16));
const ciphertext = await crypto.subtle.encrypt({
name: 'AES-CBC',
iv,
}, key, ec.encode(plaintext));
return {
key,
iv,
ciphertext,
};
}
async function aesDecrypt(ciphertext, key, iv) {
const dec = new TextDecoder();
const plaintext = await crypto.subtle.decrypt({
name: 'AES-CBC',
iv,
}, key, ciphertext);
return dec.decode(plaintext);
}
Exporting and importing keys#
const { subtle } = globalThis.crypto;
async function generateAndExportHmacKey(format = 'jwk', hash = 'SHA-512') {
const key = await subtle.generateKey({
name: 'HMAC',
hash,
}, true, ['sign', 'verify']);
return subtle.exportKey(format, key);
}
async function importHmacKey(keyData, format = 'jwk', hash = 'SHA-512') {
const key = await subtle.importKey(format, keyData, {
name: 'HMAC',
hash,
}, true, ['sign', 'verify']);
return key;
}
Wrapping and unwrapping keys#
const { subtle } = globalThis.crypto;
async function generateAndWrapHmacKey(format = 'jwk', hash = 'SHA-512') {
const [
key,
wrappingKey,
] = await Promise.all([
subtle.generateKey({
name: 'HMAC', hash,
}, true, ['sign', 'verify']),
subtle.generateKey({
name: 'AES-KW',
length: 256,
}, true, ['wrapKey', 'unwrapKey']),
]);
const wrappedKey = await subtle.wrapKey(format, key, wrappingKey, 'AES-KW');
return { wrappedKey, wrappingKey };
}
async function unwrapHmacKey(
wrappedKey,
wrappingKey,
format = 'jwk',
hash = 'SHA-512') {
const key = await subtle.unwrapKey(
format,
wrappedKey,
wrappingKey,
'AES-KW',
{ name: 'HMAC', hash },
true,
['sign', 'verify']);
return key;
}
Sign and verify#
const { subtle } = globalThis.crypto;
async function sign(key, data) {
const ec = new TextEncoder();
const signature =
await subtle.sign('RSASSA-PKCS1-v1_5', key, ec.encode(data));
return signature;
}
async function verify(key, signature, data) {
const ec = new TextEncoder();
const verified =
await subtle.verify(
'RSASSA-PKCS1-v1_5',
key,
signature,
ec.encode(data));
return verified;
}
Deriving bits and keys#
const { subtle } = globalThis.crypto;
async function pbkdf2(pass, salt, iterations = 1000, length = 256) {
const ec = new TextEncoder();
const key = await subtle.importKey(
'raw',
ec.encode(pass),
'PBKDF2',
false,
['deriveBits']);
const bits = await subtle.deriveBits({
name: 'PBKDF2',
hash: 'SHA-512',
salt: ec.encode(salt),
iterations,
}, key, length);
return bits;
}
async function pbkdf2Key(pass, salt, iterations = 1000, length = 256) {
const ec = new TextEncoder();
const keyMaterial = await subtle.importKey(
'raw',
ec.encode(pass),
'PBKDF2',
false,
['deriveKey']);
const key = await subtle.deriveKey({
name: 'PBKDF2',
hash: 'SHA-512',
salt: ec.encode(salt),
iterations,
}, keyMaterial, {
name: 'AES-GCM',
length,
}, true, ['encrypt', 'decrypt']);
return key;
}
Digest#
const { subtle } = globalThis.crypto;
async function digest(data, algorithm = 'SHA-512') {
const ec = new TextEncoder();
const digest = await subtle.digest(algorithm, ec.encode(data));
return digest;
}
Checking for runtime algorithm support#
SubtleCrypto.supports() allows feature detection in Web Crypto API,
which can be used to detect whether a given algorithm identifier
(including its parameters) is supported for the given operation.
This example derives a key from a password using Argon2, if available, or PBKDF2, otherwise; and then encrypts and decrypts some text with it using AES-OCB, if available, and AES-GCM, otherwise.
const { SubtleCrypto, crypto } = globalThis;
const password = 'correct horse battery staple';
const derivationAlg =
SubtleCrypto.supports?.('importKey', 'Argon2id') ?
'Argon2id' :
'PBKDF2';
const encryptionAlg =
SubtleCrypto.supports?.('importKey', 'AES-OCB') ?
'AES-OCB' :
'AES-GCM';
const passwordKey = await crypto.subtle.importKey(
derivationAlg === 'Argon2id' ? 'raw-secret' : 'raw',
new TextEncoder().encode(password),
derivationAlg,
false,
['deriveKey'],
);
const nonce = crypto.getRandomValues(new Uint8Array(16));
const derivationParams =
derivationAlg === 'Argon2id' ?
{
nonce,
parallelism: 4,
memory: 2 ** 21,
passes: 1,
} :
{
salt: nonce,
iterations: 100_000,
hash: 'SHA-256',
};
const key = await crypto.subtle.deriveKey(
{
name: derivationAlg,
...derivationParams,
},
passwordKey,
{
name: encryptionAlg,
length: 256,
},
false,
['encrypt', 'decrypt'],
);
const plaintext = 'Hello, world!';
const iv = crypto.getRandomValues(new Uint8Array(16));
const encrypted = await crypto.subtle.encrypt(
{ name: encryptionAlg, iv },
key,
new TextEncoder().encode(plaintext),
);
const decrypted = new TextDecoder().decode(await crypto.subtle.decrypt(
{ name: encryptionAlg, iv },
key,
encrypted,
));
Algorithm matrix#
The tables details the algorithms supported by the Node.js Web Crypto API implementation and the APIs supported for each:
Key Management APIs#
| Algorithm | subtle.generateKey() | subtle.exportKey() | subtle.importKey() | subtle.getPublicKey() |
|---|---|---|---|---|
'AES-CBC' | ✔ | ✔ | ✔ | |
'AES-CTR' | ✔ | ✔ | ✔ | |
'AES-GCM' | ✔ | ✔ | ✔ | |
'AES-KW' | ✔ | ✔ | ✔ | |
'AES-OCB' | ✔ | ✔ | ✔ | |
'Argon2d' | ✔ | |||
'Argon2i' | ✔ | |||
'Argon2id' | ✔ | |||
'ChaCha20-Poly1305'4 | ✔ | ✔ | ✔ | |
'ECDH' | ✔ | ✔ | ✔ | ✔ |
'ECDSA' | ✔ | ✔ | ✔ | ✔ |
'Ed25519' | ✔ | ✔ | ✔ | ✔ |
'Ed448'5 | ✔ | ✔ | ✔ | ✔ |
'HKDF' | ✔ | |||
'HMAC' | ✔ | ✔ | ✔ | |
'KMAC128'4 | ✔ | ✔ | ✔ | |
'KMAC256'4 | ✔ | ✔ | ✔ | |
'ML-DSA-44'4 | ✔ | ✔ | ✔ | ✔ |
'ML-DSA-65'4 | ✔ | ✔ | ✔ | ✔ |
'ML-DSA-87'4 | ✔ | ✔ | ✔ | ✔ |
'ML-KEM-512'4 | ✔ | ✔ | ✔ | ✔ |
'ML-KEM-768'4 | ✔ | ✔ | ✔ | ✔ |
'ML-KEM-1024'4 | ✔ | ✔ | ✔ | ✔ |
'PBKDF2' | ✔ | |||
'RSA-OAEP' | ✔ | ✔ | ✔ | ✔ |
'RSA-PSS' | ✔ | ✔ | ✔ | ✔ |
'RSASSA-PKCS1-v1_5' | ✔ | ✔ | ✔ | ✔ |
'X25519' | ✔ | ✔ | ✔ | ✔ |
'X448'5 | ✔ | ✔ | ✔ | ✔ |
Crypto Operation APIs#
Column Legend:
- Encryption:
subtle.encrypt()/subtle.decrypt() - Signatures and MAC:
subtle.sign()/subtle.verify() - Key or Bits Derivation:
subtle.deriveBits()/subtle.deriveKey() - Key Wrapping:
subtle.wrapKey()/subtle.unwrapKey() - Key Encapsulation:
subtle.encapsulateBits()/subtle.decapsulateBits()/subtle.encapsulateKey()/subtle.decapsulateKey() - Digest:
subtle.digest()
| Algorithm | Encryption | Signatures and MAC | Key or Bits Derivation | Key Wrapping | Key Encapsulation | Digest |
|---|---|---|---|---|---|---|
'AES-CBC' | ✔ | ✔ | ||||
'AES-CTR' | ✔ | ✔ | ||||
'AES-GCM' | ✔ | ✔ | ||||
'AES-KW' | ✔ | |||||
'AES-OCB' | ✔ | ✔ | ||||
'Argon2d' | ✔ | |||||
'Argon2i' | ✔ | |||||
'Argon2id' | ✔ | |||||
'ChaCha20-Poly1305'4 | ✔ | ✔ | ||||
'cSHAKE128'4 | ✔ | |||||
'cSHAKE256'4 | ✔ | |||||
'ECDH' | ✔ | |||||
'ECDSA' | ✔ | |||||
'Ed25519' | ✔ | |||||
'Ed448'5 | ✔ | |||||
'HKDF' | ✔ | |||||
'HMAC' | ✔ | |||||
'KMAC128'4 | ✔ | |||||
'KMAC256'4 | ✔ | |||||
'ML-DSA-44'4 | ✔ | |||||
'ML-DSA-65'4 | ✔ | |||||
'ML-DSA-87'4 | ✔ | |||||
'ML-KEM-512'4 | ✔ | |||||
'ML-KEM-768'4 | ✔ | |||||
'ML-KEM-1024'4 | ✔ | |||||
'PBKDF2' | ✔ | |||||
'RSA-OAEP' | ✔ | ✔ | ||||
'RSA-PSS' | ✔ | |||||
'RSASSA-PKCS1-v1_5' | ✔ | |||||
'SHA-1' | ✔ | |||||
'SHA-256' | ✔ | |||||
'SHA-384' | ✔ | |||||
'SHA-512' | ✔ | |||||
'SHA3-256'4 | ✔ | |||||
'SHA3-384'4 | ✔ | |||||
'SHA3-512'4 | ✔ | |||||
'X25519' | ✔ | |||||
'X448'5 | ✔ |
Class: Crypto#
globalThis.crypto is an instance of the Crypto
class. Crypto is a singleton that provides access to the remainder of the
crypto API.
crypto.getRandomValues(typedArray)#
typedArray<Buffer> | <TypedArray>- Returns: <Buffer> | <TypedArray>
Generates cryptographically strong random values. The given typedArray is
filled with random values, and a reference to typedArray is returned.
The given typedArray must be an integer-based instance of <TypedArray>,
i.e. Float32Array and Float64Array are not accepted.
An error will be thrown if the given typedArray is larger than 65,536 bytes.
Class: CryptoKey#
cryptoKey.algorithm#
- Type: <KeyAlgorithm> | <RsaHashedKeyAlgorithm> | <EcKeyAlgorithm> | <AesKeyAlgorithm> | <HmacKeyAlgorithm> | <KmacKeyAlgorithm>
An object detailing the algorithm for which the key can be used along with additional algorithm-specific parameters.
Read-only.
cryptoKey.extractable#
- Type: <boolean>
When true, the <CryptoKey> can be extracted using either
subtle.exportKey() or subtle.wrapKey().
Read-only.
cryptoKey.type#
- Type: <string> One of
'secret','private', or'public'.
A string identifying whether the key is a symmetric ('secret') or
asymmetric ('private' or 'public') key.
cryptoKey.usages#
- Type: <string[]>
An array of strings identifying the operations for which the key may be used.
The possible usages are:
'encrypt'- Enable using the key withsubtle.encrypt()'decrypt'- Enable using the key withsubtle.decrypt()'sign'- Enable using the key withsubtle.sign()'verify'- Enable using the key withsubtle.verify()'deriveKey'- Enable using the key withsubtle.deriveKey()'deriveBits'- Enable using the key withsubtle.deriveBits()'encapsulateBits'- Enable using the key withsubtle.encapsulateBits()'decapsulateBits'- Enable using the key withsubtle.decapsulateBits()'encapsulateKey'- Enable using the key withsubtle.encapsulateKey()'decapsulateKey'- Enable using the key withsubtle.decapsulateKey()'wrapKey'- Enable using the key withsubtle.wrapKey()'unwrapKey'- Enable using the key withsubtle.unwrapKey()
Valid key usages depend on the key algorithm (identified by
cryptokey.algorithm.name).
Column Legend:
- Encryption:
subtle.encrypt()/subtle.decrypt() - Signatures and MAC:
subtle.sign()/subtle.verify() - Key or Bits Derivation:
subtle.deriveBits()/subtle.deriveKey() - Key Wrapping:
subtle.wrapKey()/subtle.unwrapKey() - Key Encapsulation:
subtle.encapsulateBits()/subtle.decapsulateBits()/subtle.encapsulateKey()/subtle.decapsulateKey()
| Supported Key Algorithm | Encryption | Signatures and MAC | Key or Bits Derivation | Key Wrapping | Key Encapsulation |
|---|---|---|---|---|---|
'AES-CBC' | ✔ | ✔ | |||
'AES-CTR' | ✔ | ✔ | |||
'AES-GCM' | ✔ | ✔ | |||
'AES-KW' | ✔ | ||||
'AES-OCB' | ✔ | ✔ | |||
'Argon2d' | ✔ | ||||
'Argon2i' | ✔ | ||||
'Argon2id' | ✔ | ||||
'ChaCha20-Poly1305'4 | ✔ | ✔ | |||
'ECDH' | ✔ | ||||
'ECDSA' | ✔ | ||||
'Ed25519' | ✔ | ||||
'Ed448'5 | ✔ | ||||
'HDKF' | ✔ | ||||
'HMAC' | ✔ | ||||
'KMAC128'4 | ✔ | ||||
'KMAC256'4 | ✔ | ||||
'ML-DSA-44'4 | ✔ | ||||
'ML-DSA-65'4 | ✔ | ||||
'ML-DSA-87'4 | ✔ | ||||
'ML-KEM-512'4 | ✔ | ||||
'ML-KEM-768'4 | ✔ | ||||
'ML-KEM-1024'4 | ✔ | ||||
'PBKDF2' | ✔ | ||||
'RSA-OAEP' | ✔ | ✔ | |||
'RSA-PSS' | ✔ | ||||
'RSASSA-PKCS1-v1_5' | ✔ | ||||
'X25519' | ✔ | ||||
'X448'5 | ✔ |
Class: CryptoKeyPair#
The CryptoKeyPair is a simple dictionary object with publicKey and
privateKey properties, representing an asymmetric key pair.
cryptoKeyPair.privateKey#
- Type: <CryptoKey> A <CryptoKey> whose
typewill be'private'.
cryptoKeyPair.publicKey#
- Type: <CryptoKey> A <CryptoKey> whose
typewill be'public'.
Class: SubtleCrypto#
Static method: SubtleCrypto.supports(operation, algorithm[, lengthOrAdditionalAlgorithm])#
operation<string> "encrypt", "decrypt", "sign", "verify", "digest", "generateKey", "deriveKey", "deriveBits", "importKey", "exportKey", "getPublicKey", "wrapKey", "unwrapKey", "encapsulateBits", "encapsulateKey", "decapsulateBits", or "decapsulateKey"algorithm<string> | <Algorithm>lengthOrAdditionalAlgorithm<null> | <number> | <string> | <Algorithm> | <undefined> Depending on the operation this is either ignored, the value of the length argument when operation is "deriveBits", the algorithm of key to be derived when operation is "deriveKey", the algorithm of key to be exported before wrapping when operation is "wrapKey", the algorithm of key to be imported after unwrapping when operation is "unwrapKey", or the algorithm of key to be imported after en/decapsulating a key when operation is "encapsulateKey" or "decapsulateKey". Default:nullwhen operation is "deriveBits",undefinedotherwise.- Returns: <boolean> Indicating whether the implementation supports the given operation
Allows feature detection in Web Crypto API, which can be used to detect whether a given algorithm identifier (including its parameters) is supported for the given operation.
See Checking for runtime algorithm support for an example use of this method.
subtle.decapsulateBits(decapsulationAlgorithm, decapsulationKey, ciphertext)#
decapsulationAlgorithm<string> | <Algorithm>decapsulationKey<CryptoKey>ciphertext<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>- Returns: <Promise> Fulfills with <ArrayBuffer> upon success.
A message recipient uses their asymmetric private key to decrypt an "encapsulated key" (ciphertext), thereby recovering a temporary symmetric key (represented as <ArrayBuffer>) which is then used to decrypt a message.
The algorithms currently supported include:
subtle.decapsulateKey(decapsulationAlgorithm, decapsulationKey, ciphertext, sharedKeyAlgorithm, extractable, usages)#
decapsulationAlgorithm<string> | <Algorithm>decapsulationKey<CryptoKey>ciphertext<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>sharedKeyAlgorithm<string> | <Algorithm> | <HmacImportParams> | <AesDerivedKeyParams> | <KmacImportParams>extractable<boolean>usages<string[]> See Key usages.- Returns: <Promise> Fulfills with <CryptoKey> upon success.
A message recipient uses their asymmetric private key to decrypt an "encapsulated key" (ciphertext), thereby recovering a temporary symmetric key (represented as <CryptoKey>) which is then used to decrypt a message.
The algorithms currently supported include:
subtle.decrypt(algorithm, key, data)#
algorithm<RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AeadParams>key<CryptoKey>data<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>- Returns: <Promise> Fulfills with an <ArrayBuffer> upon success.
Using the method and parameters specified in algorithm and the keying
material provided by key, this method attempts to decipher the
provided data. If successful, the returned promise will be resolved with
an <ArrayBuffer> containing the plaintext result.
The algorithms currently supported include:
subtle.deriveBits(algorithm, baseKey[, length])#
algorithm<EcdhKeyDeriveParams> | <HkdfParams> | <Pbkdf2Params> | <Argon2Params>baseKey<CryptoKey>length<number> | <null> Default:null- Returns: <Promise> Fulfills with an <ArrayBuffer> upon success.
Using the method and parameters specified in algorithm and the keying
material provided by baseKey, this method attempts to generate
length bits.
When length is not provided or null the maximum number of bits for a given
algorithm is generated. This is allowed for the 'ECDH', 'X25519', and 'X448'5
algorithms, for other algorithms length is required to be a number.
If successful, the returned promise will be resolved with an <ArrayBuffer> containing the generated data.
The algorithms currently supported include:
subtle.deriveKey(algorithm, baseKey, derivedKeyAlgorithm, extractable, keyUsages)#
algorithm<EcdhKeyDeriveParams> | <HkdfParams> | <Pbkdf2Params> | <Argon2Params>baseKey<CryptoKey>derivedKeyAlgorithm<string> | <Algorithm> | <HmacImportParams> | <AesDerivedKeyParams> | <KmacImportParams>extractable<boolean>keyUsages<string[]> See Key usages.- Returns: <Promise> Fulfills with a <CryptoKey> upon success.
Using the method and parameters specified in algorithm, and the keying
material provided by baseKey, this method attempts to generate
a new <CryptoKey> based on the method and parameters in derivedKeyAlgorithm.
Calling this method is equivalent to calling subtle.deriveBits() to
generate raw keying material, then passing the result into the
subtle.importKey() method using the deriveKeyAlgorithm, extractable, and
keyUsages parameters as input.
The algorithms currently supported include:
subtle.digest(algorithm, data)#
algorithm<string> | <Algorithm> | <CShakeParams>data<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>- Returns: <Promise> Fulfills with an <ArrayBuffer> upon success.
Using the method identified by algorithm, this method attempts to
generate a digest of data. If successful, the returned promise is resolved
with an <ArrayBuffer> containing the computed digest.
If algorithm is provided as a <string>, it must be one of:
If algorithm is provided as an <Object>, it must have a name property
whose value is one of the above.
subtle.encapsulateBits(encapsulationAlgorithm, encapsulationKey)#
encapsulationAlgorithm<string> | <Algorithm>encapsulationKey<CryptoKey>- Returns: <Promise> Fulfills with <EncapsulatedBits> upon success.
Uses a message recipient's asymmetric public key to encrypt a temporary symmetric key. This encrypted key is the "encapsulated key" represented as <EncapsulatedBits>.
The algorithms currently supported include:
subtle.encapsulateKey(encapsulationAlgorithm, encapsulationKey, sharedKeyAlgorithm, extractable, usages)#
encapsulationAlgorithm<string> | <Algorithm>encapsulationKey<CryptoKey>sharedKeyAlgorithm<string> | <Algorithm> | <HmacImportParams> | <AesDerivedKeyParams> | <KmacImportParams>extractable<boolean>usages<string[]> See Key usages.- Returns: <Promise> Fulfills with <EncapsulatedKey> upon success.
Uses a message recipient's asymmetric public key to encrypt a temporary symmetric key. This encrypted key is the "encapsulated key" represented as <EncapsulatedKey>.
The algorithms currently supported include:
subtle.encrypt(algorithm, key, data)#
algorithm<RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AeadParams>key<CryptoKey>data<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>- Returns: <Promise> Fulfills with an <ArrayBuffer> upon success.
Using the method and parameters specified by algorithm and the keying
material provided by key, this method attempts to encipher data.
If successful, the returned promise is resolved with an <ArrayBuffer>
containing the encrypted result.
The algorithms currently supported include:
subtle.exportKey(format, key)#
format<string> Must be one of'raw','pkcs8','spki','jwk','raw-secret'4,'raw-public'4, or'raw-seed'4.key<CryptoKey>- Returns: <Promise> Fulfills with an <ArrayBuffer> | <Object> upon success.
Exports the given key into the specified format, if supported.
If the <CryptoKey> is not extractable, the returned promise will reject.
When format is either 'pkcs8' or 'spki' and the export is successful,
the returned promise will be resolved with an <ArrayBuffer> containing the
exported key data.
When format is 'jwk' and the export is successful, the returned promise
will be resolved with a JavaScript object conforming to the JSON Web Key
specification.
| Supported Key Algorithm | 'spki' | 'pkcs8' | 'jwk' | 'raw' | 'raw-secret' | 'raw-public' | 'raw-seed' |
|---|---|---|---|---|---|---|---|
'AES-CBC' | ✔ | ✔ | ✔ | ||||
'AES-CTR' | ✔ | ✔ | ✔ | ||||
'AES-GCM' | ✔ | ✔ | ✔ | ||||
'AES-KW' | ✔ | ✔ | ✔ | ||||
'AES-OCB'4 | ✔ | ✔ | |||||
'ChaCha20-Poly1305'4 | ✔ | ✔ | |||||
'ECDH' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ECDSA' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'Ed25519' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'Ed448'5 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'HMAC' | ✔ | ✔ | ✔ | ||||
'KMAC128'4 | ✔ | ✔ | |||||
'KMAC256'4 | ✔ | ✔ | |||||
'ML-DSA-44'4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ML-DSA-65'4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ML-DSA-87'4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ML-KEM-512'4 | ✔ | ✔ | ✔ | ✔ | |||
'ML-KEM-768'4 | ✔ | ✔ | ✔ | ✔ | |||
'ML-KEM-1024'4 | ✔ | ✔ | ✔ | ✔ | |||
'RSA-OAEP' | ✔ | ✔ | ✔ | ||||
'RSA-PSS' | ✔ | ✔ | ✔ | ||||
'RSASSA-PKCS1-v1_5' | ✔ | ✔ | ✔ |
subtle.getPublicKey(key, keyUsages)#
key<CryptoKey> A private key from which to derive the corresponding public key.keyUsages<string[]> See Key usages.- Returns: <Promise> Fulfills with a <CryptoKey> upon success.
Derives the public key from a given private key.
subtle.generateKey(algorithm, extractable, keyUsages)#
algorithm<string> | <Algorithm> | <RsaHashedKeyGenParams> | <EcKeyGenParams> | <HmacKeyGenParams> | <AesKeyGenParams> | <KmacKeyGenParams>
extractable<boolean>keyUsages<string[]> See Key usages.- Returns: <Promise> Fulfills with a <CryptoKey> | <CryptoKeyPair> upon success.
Using the parameters provided in algorithm, this method
attempts to generate new keying material. Depending on the algorithm used
either a single <CryptoKey> or a <CryptoKeyPair> is generated.
The <CryptoKeyPair> (public and private key) generating algorithms supported include:
'ECDH''ECDSA''Ed25519''Ed448'5'ML-DSA-44'4'ML-DSA-65'4'ML-DSA-87'4'ML-KEM-512'4'ML-KEM-768'4'ML-KEM-1024'4'RSA-OAEP''RSA-PSS''RSASSA-PKCS1-v1_5''X25519''X448'5
The <CryptoKey> (secret key) generating algorithms supported include:
subtle.importKey(format, keyData, algorithm, extractable, keyUsages)#
format<string> Must be one of'raw','pkcs8','spki','jwk','raw-secret'4,'raw-public'4, or'raw-seed'4.keyData<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <Object>
algorithm<string> | <Algorithm> | <RsaHashedImportParams> | <EcKeyImportParams> | <HmacImportParams> | <KmacImportParams>
extractable<boolean>keyUsages<string[]> See Key usages.- Returns: <Promise> Fulfills with a <CryptoKey> upon success.
This method attempts to interpret the provided keyData
as the given format to create a <CryptoKey> instance using the provided
algorithm, extractable, and keyUsages arguments. If the import is
successful, the returned promise will be resolved with a <CryptoKey>
representation of the key material.
If importing KDF algorithm keys, extractable must be false.
The algorithms currently supported include:
| Supported Key Algorithm | 'spki' | 'pkcs8' | 'jwk' | 'raw' | 'raw-secret' | 'raw-public' | 'raw-seed' |
|---|---|---|---|---|---|---|---|
'AES-CBC' | ✔ | ✔ | ✔ | ||||
'AES-CTR' | ✔ | ✔ | ✔ | ||||
'AES-GCM' | ✔ | ✔ | ✔ | ||||
'AES-KW' | ✔ | ✔ | ✔ | ||||
'AES-OCB'4 | ✔ | ✔ | |||||
'Argon2d'4 | ✔ | ||||||
'Argon2i'4 | ✔ | ||||||
'Argon2id'4 | ✔ | ||||||
'ChaCha20-Poly1305'4 | ✔ | ✔ | |||||
'ECDH' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ECDSA' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'Ed25519' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'Ed448'5 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'HDKF' | ✔ | ✔ | |||||
'HMAC' | ✔ | ✔ | ✔ | ||||
'KMAC128'4 | ✔ | ✔ | |||||
'KMAC256'4 | ✔ | ✔ | |||||
'ML-DSA-44'4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ML-DSA-65'4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ML-DSA-87'4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'ML-KEM-512'4 | ✔ | ✔ | ✔ | ✔ | |||
'ML-KEM-768'4 | ✔ | ✔ | ✔ | ✔ | |||
'ML-KEM-1024'4 | ✔ | ✔ | ✔ | ✔ | |||
'PBKDF2' | ✔ | ✔ | |||||
'RSA-OAEP' | ✔ | ✔ | ✔ | ||||
'RSA-PSS' | ✔ | ✔ | ✔ | ||||
'RSASSA-PKCS1-v1_5' | ✔ | ✔ | ✔ | ||||
'X25519' | ✔ | ✔ | ✔ | ✔ | ✔ | ||
'X448'5 | ✔ | ✔ | ✔ | ✔ | ✔ |
subtle.sign(algorithm, key, data)#
algorithm<string> | <Algorithm> | <RsaPssParams> | <EcdsaParams> | <ContextParams> | <KmacParams>key<CryptoKey>data<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>- Returns: <Promise> Fulfills with an <ArrayBuffer> upon success.
Using the method and parameters given by algorithm and the keying material
provided by key, this method attempts to generate a cryptographic
signature of data. If successful, the returned promise is resolved with
an <ArrayBuffer> containing the generated signature.
The algorithms currently supported include:
subtle.unwrapKey(format, wrappedKey, unwrappingKey, unwrapAlgo, unwrappedKeyAlgo, extractable, keyUsages)#
format<string> Must be one of'raw','pkcs8','spki','jwk','raw-secret'4,'raw-public'4, or'raw-seed'4.wrappedKey<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>unwrappingKey<CryptoKey>
unwrapAlgo<string> | <Algorithm> | <RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AeadParams>unwrappedKeyAlgo<string> | <Algorithm> | <RsaHashedImportParams> | <EcKeyImportParams> | <HmacImportParams> | <KmacImportParams>
extractable<boolean>keyUsages<string[]> See Key usages.- Returns: <Promise> Fulfills with a <CryptoKey> upon success.
In cryptography, "wrapping a key" refers to exporting and then encrypting the
keying material. This method attempts to decrypt a wrapped
key and create a <CryptoKey> instance. It is equivalent to calling
subtle.decrypt() first on the encrypted key data (using the wrappedKey,
unwrapAlgo, and unwrappingKey arguments as input) then passing the results
to the subtle.importKey() method using the unwrappedKeyAlgo,
extractable, and keyUsages arguments as inputs. If successful, the returned
promise is resolved with a <CryptoKey> object.
The wrapping algorithms currently supported include:
The unwrapped key algorithms supported include:
subtle.verify(algorithm, key, signature, data)#
algorithm<string> | <Algorithm> | <RsaPssParams> | <EcdsaParams> | <ContextParams> | <KmacParams>key<CryptoKey>signature<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>data<ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>- Returns: <Promise> Fulfills with a <boolean> upon success.
Using the method and parameters given in algorithm and the keying material
provided by key, this method attempts to verify that signature is
a valid cryptographic signature of data. The returned promise is resolved
with either true or false.
The algorithms currently supported include:
subtle.wrapKey(format, key, wrappingKey, wrapAlgo)#
format<string> Must be one of'raw','pkcs8','spki','jwk','raw-secret'4,'raw-public'4, or'raw-seed'4.key<CryptoKey>wrappingKey<CryptoKey>wrapAlgo<string> | <Algorithm> | <RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AeadParams>- Returns: <Promise> Fulfills with an <ArrayBuffer> upon success.
In cryptography, "wrapping a key" refers to exporting and then encrypting the
keying material. This method exports the keying material into
the format identified by format, then encrypts it using the method and
parameters specified by wrapAlgo and the keying material provided by
wrappingKey. It is the equivalent to calling subtle.exportKey() using
format and key as the arguments, then passing the result to the
subtle.encrypt() method using wrappingKey and wrapAlgo as inputs. If
successful, the returned promise will be resolved with an <ArrayBuffer>
containing the encrypted key data.
The wrapping algorithms currently supported include:
Algorithm parameters#
The algorithm parameter objects define the methods and parameters used by the various <SubtleCrypto> methods. While described here as "classes", they are simple JavaScript dictionary objects.
Class: AeadParams#
aeadParams.additionalData#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <undefined>
Extra input that is not encrypted but is included in the authentication
of the data. The use of additionalData is optional.
aeadParams.iv#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
The initialization vector must be unique for every encryption operation using a given key.
Class: AesDerivedKeyParams#
Class: AesCbcParams#
aesCbcParams.iv#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Provides the initialization vector. It must be exactly 16-bytes in length and should be unpredictable and cryptographically random.
Class: AesCtrParams#
aesCtrParams.counter#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
The initial value of the counter block. This must be exactly 16 bytes long.
The AES-CTR method uses the rightmost length bits of the block as the
counter and the remaining bits as the nonce.
Class: AesKeyAlgorithm#
Class: AesKeyGenParams#
Class: Argon2Params#
argon2Params.associatedData#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Represents the optional associated data.
argon2Params.memory#
- Type: <number>
Represents the memory size in kibibytes. It must be at least 8 times the degree of parallelism.
argon2Params.nonce#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Represents the nonce, which is a salt for password hashing applications.
argon2Params.secretValue#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Represents the optional secret value.
Class: ContextParams#
contextParams.context#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <undefined>
The context member represents the optional context data to associate with
the message.
Class: CShakeParams#
cShakeParams.customization#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <undefined>
The customization member represents the customization string.
The Node.js Web Crypto API implementation only supports zero-length customization
which is equivalent to not providing customization at all.
cShakeParams.functionName#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <undefined>
The functionName member represents represents the function name, used by NIST to define
functions based on cSHAKE.
The Node.js Web Crypto API implementation only supports zero-length functionName
which is equivalent to not providing functionName at all.
Class: EcdhKeyDeriveParams#
ecdhKeyDeriveParams.public#
- Type: <CryptoKey>
ECDH key derivation operates by taking as input one parties private key and
another parties public key -- using both to generate a common shared secret.
The ecdhKeyDeriveParams.public property is set to the other parties public
key.
Class: EcdsaParams#
ecdsaParams.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
Class: EcKeyAlgorithm#
Class: EcKeyGenParams#
Class: EcKeyImportParams#
Class: EncapsulatedBits#
A temporary symmetric secret key (represented as <ArrayBuffer>) for message encryption and the ciphertext (that can be transmitted to the message recipient along with the message) encrypted by this shared key. The recipient uses their private key to determine what the shared key is which then allows them to decrypt the message.
encapsulatedBits.ciphertext#
- Type: <ArrayBuffer>
encapsulatedBits.sharedKey#
- Type: <ArrayBuffer>
Class: EncapsulatedKey#
A temporary symmetric secret key (represented as <CryptoKey>) for message encryption and the ciphertext (that can be transmitted to the message recipient along with the message) encrypted by this shared key. The recipient uses their private key to determine what the shared key is which then allows them to decrypt the message.
encapsulatedKey.ciphertext#
- Type: <ArrayBuffer>
encapsulatedKey.sharedKey#
- Type: <CryptoKey>
Class: HkdfParams#
hkdfParams.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
hkdfParams.info#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Provides application-specific contextual input to the HKDF algorithm. This can be zero-length but must be provided.
hkdfParams.salt#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
The salt value significantly improves the strength of the HKDF algorithm.
It should be random or pseudorandom and should be the same length as the
output of the digest function (for instance, if using 'SHA-256' as the
digest, the salt should be 256-bits of random data).
Class: HmacImportParams#
hmacImportParams.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
Class: HmacKeyAlgorithm#
hmacKeyAlgorithm.hash#
- Type: <Algorithm>
Class: HmacKeyGenParams#
hmacKeyGenParams.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
Class: KmacImportParams#
Class: KmacKeyAlgorithm#
Class: KmacKeyGenParams#
Class: KmacParams#
kmacParams.customization#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <undefined>
The customization member represents the optional customization string.
Class: Pbkdf2Params#
pbkdf2Params.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
pbkdf2Params.iterations#
- Type: <number>
The number of iterations the PBKDF2 algorithm should make when deriving bits.
pbkdf2Params.salt#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Should be at least 16 random or pseudorandom bytes.
Class: RsaHashedImportParams#
rsaHashedImportParams.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
Class: RsaHashedKeyAlgorithm#
rsaHashedKeyAlgorithm.hash#
- Type: <Algorithm>
Class: RsaHashedKeyGenParams#
rsaHashedKeyGenParams.hash#
- Type: <string> | <Algorithm>
If represented as a <string>, the value must be one of:
If represented as an <Algorithm>, the object's name property
must be one of the above listed values.
rsaHashedKeyGenParams.modulusLength#
- Type: <number>
The length in bits of the RSA modulus. As a best practice, this should be
at least 2048.
rsaHashedKeyGenParams.name#
- Type: <string> Must be one of
'RSASSA-PKCS1-v1_5','RSA-PSS', or'RSA-OAEP'.
rsaHashedKeyGenParams.publicExponent#
- Type: <Uint8Array>
The RSA public exponent. This must be a <Uint8Array> containing a big-endian,
unsigned integer that must fit within 32-bits. The <Uint8Array> may contain an
arbitrary number of leading zero-bits. The value must be a prime number. Unless
there is reason to use a different value, use new Uint8Array([1, 0, 1])
(65537) as the public exponent.
Class: RsaOaepParams#
rsaOaepParams.label#
- Type: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
An additional collection of bytes that will not be encrypted, but will be bound to the generated ciphertext.
The rsaOaepParams.label parameter is optional.
Class: RsaPssParams#
rsaPssParams.saltLength#
- Type: <number>
The length (in bytes) of the random salt to use.
Footnotes
-
See Modern Algorithms in the Web Cryptography API ↩ ↩2 ↩3 ↩4 ↩5 ↩6 ↩7 ↩8 ↩9 ↩10 ↩11 ↩12 ↩13 ↩14 ↩15 ↩16 ↩17 ↩18 ↩19 ↩20 ↩21 ↩22 ↩23 ↩24 ↩25 ↩26 ↩27 ↩28 ↩29 ↩30 ↩31 ↩32 ↩33 ↩34 ↩35 ↩36 ↩37 ↩38 ↩39 ↩40 ↩41 ↩42 ↩43 ↩44 ↩45 ↩46 ↩47 ↩48 ↩49 ↩50 ↩51 ↩52 ↩53 ↩54 ↩55 ↩56 ↩57 ↩58 ↩59 ↩60 ↩61 ↩62 ↩63 ↩64 ↩65 ↩66 ↩67 ↩68 ↩69 ↩70 ↩71 ↩72 ↩73 ↩74 ↩75 ↩76 ↩77 ↩78 ↩79 ↩80 ↩81 ↩82 ↩83 ↩84 ↩85 ↩86 ↩87 ↩88 ↩89 ↩90 ↩91 ↩92 ↩93 ↩94 ↩95 ↩96 ↩97 ↩98 ↩99 ↩100 ↩101 ↩102 ↩103 ↩104 ↩105 ↩106 ↩107 ↩108 ↩109 ↩110 ↩111 ↩112 ↩113 ↩114 ↩115 ↩116 ↩117 ↩118 ↩119 ↩120 ↩121 ↩122 ↩123 ↩124 ↩125 ↩126 ↩127 ↩128 ↩129 ↩130 ↩131 ↩132 ↩133 ↩134 ↩135 ↩136 ↩137 ↩138 ↩139 ↩140 ↩141 ↩142 ↩143 ↩144 ↩145 ↩146 ↩147 ↩148 ↩149 ↩150
-
See Secure Curves in the Web Cryptography API ↩ ↩2 ↩3 ↩4 ↩5 ↩6 ↩7 ↩8 ↩9 ↩10 ↩11 ↩12 ↩13 ↩14 ↩15 ↩16 ↩17 ↩18 ↩19 ↩20 ↩21 ↩22 ↩23 ↩24